MACS 30405: Exploring Cultural Space
University of Chicago
\[\begin{equation} \begin{aligned} r_i &\propto \sum_{j=1}^p\ c_j \frac{x_{ij}}{x_{i\cdot}}, \\ \text{and } c_j &\propto \sum_{i=1}^n\ r_i \frac{x_{ij}}{x_{\cdot j}}, \end{aligned} \end{equation}\] where \(x_{i\cdot}\) and \(x_{\cdot j}\) are the sums of the \(i\)th row and the \(j\)th column, respectively.
… | Student | … | Engineer | … | Comedy | … | Sci-fi | |
---|---|---|---|---|---|---|---|---|
Individual 1 | … | 1 | … | 0 | … | 1 | … | 0 |
… | … | … | … | … | … | … | … | … |
Individual \(n\) | … | 0 | … | 1 | … | 0 | … | 1 |